<noframes id="l5hdb"><address id="l5hdb"></address>
<sub id="l5hdb"></sub>

          <address id="l5hdb"></address>

          |本期目錄/Table of Contents|

          [1]沈智敏,陳泓波,張培培,等.機器人輔助肺葉切除術的學習曲線[J].福建醫科大學學報,2020,54(02):117-120.
           SHEN Zhimin,CHEN Hongbo,ZHANG Peipei,et al.Learning Curve of Robot-Assisted Lobectomy[J].Journal of Fujian Medical University,2020,54(02):117-120.
          點擊復制

          機器人輔助肺葉切除術的學習曲線(PDF)
          分享到:

          《福建醫科大學學報》[ISSN:1672-4194/CN:35-1192/R]

          卷:
          第54卷
          期數:
          2020年02期
          頁碼:
          117-120
          欄目:
          臨床研究
          出版日期:
          2020-04-30

          文章信息/Info

          Title:
          Learning Curve of Robot-Assisted Lobectomy
          文章編號:
          1672-4194(2020)02-0117-04
          作者:
          沈智敏1 陳泓波1 張培培1 陳 遂1 高 磊1 康明強123
          1.福建醫科大學 附屬協和醫院胸外科,福州 350001; 2.福建省消化道惡性腫瘤教育部重點實驗室,福州 350122; 3.福建省腫瘤微生物重點實驗室,福州 350122
          Author(s):
          SHEN Zhimin1 CHEN Hongbo1 ZHANG Peipei1 CHEN Sui1 GAO Lei1KANG Mingqiang123
          1.Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China; 2.Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350122, China; 3.Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350122, China
          關鍵詞:
          胸腔鏡 機器人 肺切除術
          Keywords:
          thoracoscopes robotics pneumonectomy
          分類號:
          R-05; R443.8; R655; R655.3
          DOI:
          -
          文獻標志碼:
          A
          摘要:
          目的 探討機器人輔助胸腔鏡(RATS)下肺葉切除術在早期肺癌中的學習曲線。 方法 選擇早期肺癌患者36例,均接受機器人輔助胸腔鏡下肺葉切除治療,回顧分析患者的資料。接受肺葉切除的患者按手術時間分為A,B,C組,每組12例,比較各組的平均手術時間、術中出血量、淋巴結清掃數目、胸腔引流量、胸導管拔管時間、術后住院時間及術后并發癥等。 結果 肺葉切除A,B,C組患者的術中出血量分別為(109.6±65.2),(34.2±19.9)及(34.2±27.8)mL,A組分別與B組和C組比較,差別均有統計學意義(P<0.05); 3組患者的手術時間分別為(239.3±37.5),(193.5±29.8)及(171.3±40.0)min,胸腔引流管引流量分別為(1 049.0±476.0),(997.3±352.2)及(768.0±284.3)mL,淋巴結清掃數量分別為(14.7±3.4),(16.3±2.8)及(19.8±2.5)個,3組間3個指標差別均有統計學意義(P<0.05)。3組患者的術后并發癥發生率、術后拔除胸腔引流管時間、術后住院時間等差別均無統計學意義(P>0.05)。 結論 在熟練掌握三孔電視胸腔鏡(VATS)早期肺癌的肺葉切除術的基礎上,采取RATS的學習曲線約需12例,術中出血量減少、手術時間縮短、胸腔引流量和淋巴結清掃數量可作為主要的衡量指標。
          Abstract:
          Objective To investigate the learning curve of robotic assisted(RATS)thoracoscopic lobectomy in early stage lung cancer. Methods 36 patients with early stage lung cancer, who underwent robot-assisted thoracoscopic lobectomy were selected, and the data of patients were retrospectively analyzed. The patients were divided into groups A, B, and C according to the operation time. Each group had 12 cases. The average operation time, intraoperative blood loss, lymph node dissection, chest drainage, thoracic duct extubation time, postoperative hospital stay and postoperative complications, etc. were compared. Results The intraoperative blood loss of group A, B, and C in the lobectomy group was(109.6±65.2),(34.2±19.9), and(34.2±27.8)mL. The difference between A group with B and C group was statistically significant(P<0.05). The operation time of patients in group A, B, and C was(239.3±37.5),(193.5±29.8), and(171.3±40.0)min, and the difference was statistically significant(P<0.05). The drainage of chest tube in patients in group A, B, and C were(1 049.0±476.0),(997.3±352.2), and(768.0±284.3)mL, respectively. The number of lymph node dissection in group A, B, and C was(14.7±3.4),(16.3±2.8), and(19.8±2.5), and the difference between the three groups was statistically significant(P<0.05). There were no significant differences in complications, postoperative drainage of the thoracic drainage tube, and postoperative hospital stay(P>0.05). Conclusions Based on the lobectomy of three-well VATS for early lung cancer, the RATS learning curve is about 12 cases. Reduced intraoperative blood loss, reduced operative time, chest drainage, and number of lymph nodes can be used as primary measure.

          參考文獻/References:

          [1] Mu J W, Chen G Y, Sun K L, et al. Application of video-assisted thoracic surgery in the standard operation for thoracic tumors[J]. Cancer Biol Med, 2013, 10(1):28-35.
          [2] Melfi F M, Menconi G F, Mariani A M, et al. Early experience with robotic technology for thoracoscopic surgery[J]. Eur J Cardio-Thorac, 2002, 21(5):864-868.
          [3] Huang J, Luo Q, Tan Q, et al. Initial experience of robot-assisted thoracoscopic surgery in China[J]. Int J Med Robot,, 2014, 10(4):404-409.
          [4] Adams R D, Bolton W D, Stephenson J E, et al. Initial multicenter community robotic lobectomy experience: comparisons to a national database[J]. Ann Thorac Surg, 2014, 97(6):1893-1900.
          [5] Cerfolio R J, Ghanim A F, Dylewski M, et al. The long term survival of robotic lobectomy for non-small cell lung cancer: a multi-institutional study[J]. J Thorac Cardiovasc Surg,2018, 155(2): 778-786.
          [6] Yang H X, Woo K M, Sima C S, et al. Long-term survival based on the surgical approach to lobectomy for clinical stageⅠnonsmall cell lung cancer: comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy[J]. Ann Surg, 2017,265(2):431-437.
          [7] Roy L, Susana M M, Emad M, et al. Single-port versus multi-port robotic sacrocervicopexy: Establishment of a learning curve and short-term outcomes[J]. Eur J Obstet Gynecol Reprod Biol, 2019,239:1-6.
          [8] Kim, Kown H G, Lin H,et al. Quantitative assessment of the learning curve for robotic thyroid surgery[J]. J Clin Med, 2019,8(3):402.
          [9] Kassite I, Bejan-Angoulvant T, Lardy H, et al. A systematic review of the learning curve in robotic surgery: range and heterogeneity[J]. Surg Endosc, 2019,33(2):353-365.
          [10] Meyer M, Gharagozloo F, Tempesta B, et al. The learning curve of robotic lobectomy[J].Int J Med Robot, 2012,8(4):448-452.
          [11] Veronesi G, Galetta D, Maisonneuve P, et al. Four-arm robotic lobectomy for the treatment of early-stage lung cancer[J]. J Thorac Cardiovasc Surg, 2010,140(1):19-25.
          [12] Baldonado J J A R, Amaral M, Garrett J, et al. Credentialing for robotic lobectomy: what is the learning curve? A retrospective analysis of 272 consecutive cases by a single surgeon[J]. J Robot Surg, 2019,13(5):663-669.
          [13] Ma M F, Olivia F, Federico D, et al. Robotic lobectomy for lung cancer: evolution in technique and technology[J]. Eur J Cardiothorac Surg, 2014, 46(4):626-630.
          [14] Pierluigi N, Edoardo B, Emanuele V, et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: comparison of costs and outcomes at a single institute[J]. J Thorac Dis, 2018,10(2):790-798.
          [15] Giulia V. Robotic surgery for the treatment of early-stage lung cancer[J]. Curr Opin Onco, 2013,25(2):107-114.
          [16] Ahn S, Jeong J Y, Kim H W, et al. Robotic lobectomy for lung cancer: initial experience of a single institution in Korea[J].Ann Cardiothorac Surg, 2019,8(2):226-232.
          [17] Chen S, Huang S J, Yu S B, et al. The clinical value of a new method of functional lymph node dissection in video-assisted thoracic surgery right non-small cell lung cancer radical resection[J]. J Thorac Dis, 2019,11(2):477-487.

          相似文獻/References:

          [1]朱 勇,梁明強,吳維棟,等.單孔全胸腔鏡肺葉切除術治療非小細胞肺癌的初步探索[J].福建醫科大學學報,2014,48(06):382.
           ZHU Yong,LIANG Mingqiang,WU Weidong,et al.Preliminary Exploration of Single-port Total ThoracoscopicLobectomy in Treating Non-small Cell Lung Cancer[J].Journal of Fujian Medical University,2014,48(02):382.
          [2]林劍鋒,鄭煒,朱勇,等.單孔與三孔胸腔鏡肺癌根治術后C反應蛋白和降鈣素原水平的比較[J].福建醫科大學學報,2016,50(02):112.
           LIN Jianfeng,ZHENG Wei,ZHU Yong,et al.Comparison of the Level of C-reactive Protein and Procalcitonin in Radical Surgery of Lung Cancer by Uniportal and Triple-port VATS at Postoperation[J].Journal of Fujian Medical University,2016,50(02):112.
          [3]何昌進,葉 輝,顏海強,等.全胸腔鏡下肺良性腫物楔形切除術的學習曲線研究[J].福建醫科大學學報,2017,51(02):134.
          [4]江文壇,楊建勝,林良安,等.劍突下胸腔鏡胸腺切除術的安全性和可行性研究[J].福建醫科大學學報,2020,54(01):40.
           JIANG Wentan,YANG Jiansheng,LIN Liang'an,et al.Safety and Feasibility Study of Subxiphoid Thoracoscopic Thymectomy[J].Journal of Fujian Medical University,2020,54(02):40.

          備注/Memo

          備注/Memo:
          收稿日期: 2019-07-08基金項目: 國家自然科學基金(81773129); 福建省科技創新聯合項目(2017Y9039); 福建醫科大學啟航基金(2017Y2027)作者簡介: 沈智敏,男,住院醫師,福建醫科大學2018級博士研究生通訊作者: 康明強. Email:mingqiang_kang@126.com
          更新日期/Last Update: 2020-04-30
          鼎盛彩票